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Autonomous Robot Swarm

• Self-organizing mobile robot swarm
• Application: Planetary exploration  No GNSS available
• 3 translational and 3 rotational degrees of freedom per robot
• Very high degree of freedom  Challenging self-organization

Network Constellation
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Wireless Loc. Network
UWB multilateration systems 
(TDOA / TOA / RTOF)
• Complex infrastructure
• Low reliability
• No orientation

Proposed solution               
(bilateral RTOF + 2D DOA)
• Minimum infrastructure
• High reliability
• Orientation estimation

Node 3

Node 1

Node 2

Node 0

d2

d1

d3

Node 2

Node 1

Azimuth
Elevationd

5/23/2016 Y. Dobrev 3



Hardware Description
• 8 channel FMCW SIMO
• 2D sparse antenna 

array
– Azimuth and elevation 

DOA estimation
• RF front end

– Center frequency: 
24.125 GHz

– Sweep Bandwidth: 
250 MHz

• DSP board
– 14-bit ADCs
– Signal processing on 

FPGA / ARM CPU
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24 GHz Secondary Radar

• Master sends synchronization FMCW ramps
• Slave synchronizes precisely in time and 

frequency
• Slave sends measurement FMCW ramps
• Master calculates distance from RTOF
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3D Localization
• Signal model for IF signal

– fn: frequency in channel n
– φg,n: Phase due to 

geometry
– φc,n: Error phase term

• 3D spatial matched filter Hn

– rRx,n: 3D location of 
antenna n

– rTx,H: Hypothesis in 3D
• 3D correlation
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Calibration

• Problem: Ambiguities in angle estimation due to 
phase error term φc,n

• Model channel mismatch and mutual coupling 
by 8 × 8 complex matrix C
– Measurements to a target at multiple known 

positions in anechoic chamber
– Formulate and solve least-squares problem to 

obtain C
– Apply calibration to measurement S

 Unambiguous measurement range of >±45° in 
both azimuth and elevation

= -1
calS C S
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Ring Antenna Array
• Rx: 8 patch antennas at the sides of an 

octagonal prism
• 360° angular coverage in azimuth
• Azimuth angle estimation using a combination 

of amplitude monopulse (AM) and phase 
monopulse (PM)

• Inclinometer for complete 3D orientation
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Self-Organization – 3D Position

• One node is chosen as anchor
• It measures d, φaz, el to other nodes
• 3D position of other nodes can be estimated
• 3D orientation of nodes still unknown

Anchor node
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Self-Organization – 3D Orientation

• 3D position of nodes 1, 2, and 3 in anchor frame of reference 
already estimated  define orientation matrix Rglo

• Node 1 determines 3D position of nodes 1 and 2 in its frame of 
reference  orientation matrix Rloc

• 3D orientation matrix Rnode1 of node 1 in anchor frame can be 
determined by Rnode1 = Rloc

-1Rglo

3D Position of 
Nodes 1,2, and 3

Node 1 measures 
to nodes 2 and 3

Node 1 can be 
oriented

3
2

1

3
2 3

2

x
z

y 1

5/23/2016 Y. Dobrev 10



Self-Organization Algorithm

Perform breadth-first search in search tree
• Anchor node 1 locates other nodes in 3D in its frame of reference
• Next nodes estimate their 3D orientation and improve positions from own measurements
• Repeat until all network nodes visited
• Weight nodes according to their position in search tree (lower weight further down the tree 

due to error accumulation)

Determine 3D 
Position

Determine rotation 
matrix
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with next node

x
z

y 1

3

2 4

1

3

2 4
x

z y

1

3

2 4

5/23/2016 Y. Dobrev 11



Measurement Scenario

• 5 mobile robots
• 5 tables / ramps to test different heights / slopes
• Evaluation: Keep nodes 2…5 static, move node 1
• High-precision optical tachymeter as reference
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Measurement Results – Raw Data
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• Node 1 starts on 
table and drives 
down and around 
ramp

• Nodes 2…5 static

• RMS-Error
– Range 9-19 cm
– Azimuth 0.7°-1.9°
– Elevation 0.8°-1.1°

• 68.3 % of measurements have 3D error 
<19-39 cm

• 95.4 % of measurements have 3D error 
<34-74 cm
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• Node 5 is anchor node
• Apply breadth-first 

search algorithm
• Determine 3D position 

and 3D orientation of 
all network nodes

Self-Organized Network
Measurement Result
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optical reference
Node 1



Self-Organization Result

• 68.3 % of estimated 3D positions have error <18-32 cm
• 95.4 % of estimated 3D positions have error <24-37 cm
• Unfortunately no reference for 3D orientation available
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Extended Kalman Filter
• After self-organization, keep 4 nodes static (reference nodes)
• Extended Kalman filter to track mobile node in anchor node frame of 

reference
• Update step

– Reference nodes’ measurements: d, φaz, ϑel
 Estimate 3D position of mobile robot

– Inclinometer measurements: βpitch, γroll
 Estimate pitch and roll angles of mobile robot

– Mobile node measurements: d, φaz
 Estimate yaw angle of mobile robot

• Propagation step
– Model 3D translational and angular acceleration as normally distributed 

noise
– Estimate mobile robot 3D translation and rotational velocity from sensor 

measurements
– No IMU used to keep solution generic also for legged robots
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Localization Uncertainty
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• Node 2 and 3 measuring to a target
• Longitudinal uncertainty independent of distance; Lateral uncertainty dependent on 

distance
• Resulting 3D localization uncertainty dependent on network constellation
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EKF Result

• Phase 1: All nodes static, self-organization
• Phase 2: Nodes 2…5 static, node 1 mobile
• 68.3 % of errors <16.8 cm, 95.4 % <33.6 cm
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Summary

• FMCW 24 GHz localization system using RTOF and 
DOA using sparse antenna arrays

• 6D network self-organization – Extremely challenging 
task due to very high degree of freedom

• Self-organization of static nodes using breadth-first 
search algorithm

• Extended Kalman filter used for subsequent 
localization of mobile node

• Verified using a mobile robot swarm of 5 nodes
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Thank you for your attention!


