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 Autonomous vehicles to grow in 
importance
– Offer lower cost and higher reliability 

than human labor
– Self-driving cars in complex and dynamic 

environments such as urban areas still a 
challenge

– Autonomous vehicles on the rise in 
simpler scenarios in logistics, 
manufacturing, and service sectors

– Localization crucial for navigation
 Localization technology

– State of the art: GNSS (GPS / RTK) 
global, but not available near buildings, 
under cranes, indoors, …

– Wireless local positioning to 
complement GNSS and enable coverage 
in difficult situations

Motivation
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Primary radar
 Detects passive targets
 Rx power dependent on 

RCS and range with R−4

 Target ID difficult
 No synchronization 

necessary
 Imaging applications

Primary and Secondary Radar
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Secondary radar
 Active target
 Rx power dependent on 

relative orientation and 
range with R−2

 Target ID known
 Sync challenging
 Positioning applications
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 Maritime logistics depends on efficient container handling
 Localization important for container tracking, route 

optimization, collision avoidance, automation

Container Terminal Logistics Hamburger 
Hafen und Logistik AG (HHLA) terminal 
in Hamburg, Germany

ICMIM 2018 – Yassen Dobrev

Straddle Carrier

Critical area 
with obstructed 
GNSS signal

6

 Cranes block 
and disturb 
GNSS signals

 Wireless local 
positioning 
system (WLPS) 
used additionally
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 Based on 5.8 GHz FMCW secondary radar with 100MHz 
bandwidth

 5-6 anchor nodes precisely synchronize wirelessly
 Anchor nodes periodically transmit
 Mobile nodes receive signals and compute position using 

inverse TDOA (ITDOA), similar to GPS using TOA
 Arbitrary number of mobile nodes

Terminal Logistics WLPS
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WLPS at Hamburg Terminal
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Containers

Waterside

Crane

8



/26

 Coverage: 73.6 % with GNSS vs. 99.4 % with WLPS
 Estimated Positioning Error (EPE) mostly < 60 cm (95 %)

Results at Hamburg Terminal
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Multilateration vs. RTOF+DOA
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Node 3

Node 1

Node 2

Node 0

d2
d1

d3

Node 2

Node 1

d

Azimuth
Elevation

Multilateration / multiangulation 
(TDOA, TOA, RTOF / DOA)

−Complex infrastructure

−Low reliability

Proposed solution   
(bilateral RTOF + 2D DOA)

−Minimum infrastructure

−High reliability

−Orientation estimation
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RTOF + DOA Position Estimation 
Accuracy
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 Cross-range error increases with range

Static Radar Node

d

~ d 

Target positioning 
uncertainty ellipse
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4 static nodes measuring RTOF + DOA to a mobile node

Test Scenario
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Measurements in Entrance Hall in DFKI Building, Bremen

13



/26

 Achievable accuracy depends on target and node positions
 Optimal: Intersections geometrically orthogonal
 Kalman filter attains CRLB

RTOF+DOA: Optimizing Node 
Placement
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1 2

Measurement 
Uncertainty Node 1

Measurement 
Uncertainty Node 2

3D Localization 
Uncertainty
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 24 GHz FMCW radar, 
8 Rx channels

 Achieved accuracy: 
12 cm (95 %)

 Applications
– Space exploration 

(Rover)
– Warehouse (Forklift)
– Logistics (Straddle 

carrier)

 Simultaneous 3D 
position and 3D 
orientation

EKF-Based Mobile Robot 
Localization with Secondary Radar
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Developed as part of the project 
TransTerrA funded by the German 
Aerospace Center (DLR)

Measurement campaign in 
collaboration with Robotics 
Innovation Center DFKI Bremen

● Ground Truth

→ 6D Localization 
Result

10× Playback 
Speed
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 Population aging  Strong demand for hospital workers
 Nursing staff spend much time for transportation tasks
 Develop an autonomous service robot system to 

relieve nursing staff

WLPS for Healthcare Service 
Robotics

ICMIM 2018 – Yassen Dobrev 17
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 Indoor environment challenges
– no GPS
– Cluttered rooms and long narrow 

corridors  numerous multipath 
reflections

– Small spaces  high accuracy 
requirements

 Approach: Multi-modal sensor 
fusion (EKF)
– Secondary radar
– Ultrasonic wall-detection system
– Odometry

Indoor WLPS for Hospitals
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Sensor Measurement Results in 
Indoor Environment
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Odometry Static Radar Mobile Radar Ultrasound
19

Sensor Fusion
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Localization Results

ICMIM 2018 – Yassen Dobrev

● Reference (total station)
— Corridor walls / doors / cabinets

● Localization result (robot)
Static radar node

Developed as part of the project iserveU funded by the Federal Ministry of Education and Research of Germany (BMBF)

▪
Person◦

Static radar node
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 Test in realistic 
scenarios

 Achieved 2D 
position accuracy 
of 10 cm

 Demonstrated 
stability

 Performance 
comparable to 
laser scanner

 Indoor radar 
localization feasible

Tests in Katharinenhospital, 
Stuttgart, Germany
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▪

▪

Static radar node

Static radar node

Static radar node
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 Applications: Parcel delivery, surveillance, automated 
warehouse inventory, etc.

 Main Challenges: Reliability, safety, GNSS jamming
 Takeoff / landing most critical flight phase 

 Robust localization crucial

UAV 3D Localization
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UAV 3D Localization
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Measurement campaign in cooperation with Yavor Dobrev, Institute of Flight System Dynamics (FSD), RWTH Aachen
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 Conclusion
– Autonomously operating devices such as mobile service 

robots, straddle carriers, forklifts, UAVs with huge growth 
potential

– Wireless local positioning enables robust and accurate 
localization in indoor and challenging outdoor scenarios

– Range and angle measurements with secondary radar 
enable positioning with minimum infrastructure

 Outlook: 77GHz highly integrated automotive radar 
chips provide higher bandwidth, more channels, 
miniaturization, hybrid primary / secondary operation

Conclusion and Outlook

ICMIM 2018 – Yassen Dobrev

Thank you for your attention! 🙏
26
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 RTOF+DOA: Only a single radar node sufficient
 Provides reliable coverage of a larger volume
 Orientation estimation possible

CRLB Multiangulation vs. 
Multilateration vs. RTOF+DOA
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Sensor Fusion – Results
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 Angle estimation severely 
disturbed in corridor

 Ultrasonic wall-detection 
system helps in cross-range

 Odometry useful when 
other sensors disturbed

 Achieved 2D position 
accuracy of 10 cm

 Localization sufficiently 
robust and accurate for 
navigation

29
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Microsoft Indoor Localization 
Competition 2016
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 Annual event
 31 contestants in 2016 (18 in 3D and 13 in 2D category)

Evaluation area in the Dachfoyer hall of the Hofburg building (former imperial 
palace) in Vienna, Austria

30
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 Mean absolute error 37 cm  4th place
 Almost all other systems used UWB and 

multilateration with much larger bandwidth!

Microsoft Indoor Localization 
Competition 2016 – Results

ICMIM 2018 – Yassen Dobrev 31
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 Each vehicle equipped with 4 radar nodes with 2 antennas 
for diversity

 Sensor fusion with IMU and odometry
 Combination of ITDOA and RTOF to improve DOP in areas 

under cranes  95 % of errors < 9cm
 Outlook: Automation requires 95% of errors < 5cm

Terminal Logistics WLPS

ICMIM 2018 – Yassen Dobrev 32



/26

RTOF+DOA
Best / Worst Node Placement
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Geometrically 
orthogonal

Geometrically 
parallel
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RTOF+DOA
Resulting Covariance in 3D
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 CRLB for 3D can be 
derived analogously

 When nodes arranged in 
plane, worse PDOP in z

 Arithmetic mean does not 
attain CRLB

 Kalman Filter attains CRLB
 Use EKF to fuse radar 
measurements for 3D 
position estimation

34
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Single Node RTOF+DOA CRLB
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 Measure distance d
and angles φ, ϑ

 Determine 3D position 
covariance Σαd,3D from 
measurement 
covariance Q

 3D localization with 
one node possible

8 cm

0.8 , 1.2
d

 


 


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Multilateration CRLB

ICMIM 2018 – Yassen Dobrev

 Measure distance dn
between node position ps,n
and target position pt

 Determine 3D position 
covariance Σd,3D from 
measurement covariance Q
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Multiangulation CRLB
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 Measure angles φn, ϑn
between node and target

 Determine 3D position 
covariance Σα,3D from 
measurement covariance Q

 Areas with large PDOP
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RTOF+DOA CRLB
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 Measure distance dn and 
angles φn, ϑn

 Determine 3D position 
covariance Σαd,3D from 
measurement covariance Q

 Throughout low 3D PDOP
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Robot Configurations
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Mobile robot with secondary radar in 
2 indoor scenarios

39
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24GHz FMCW SIMO Secondary 
Radar
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 8 channel FMCW SIMO
 2D sparse antenna 

array
– Azimuth and 

elevation DOA 
estimation

 RF front end
– Center frequency: 

24.125 GHz
– Sweep Bandwidth:     

250 MHz
 DSP board

– 14-bit ADCs
– Signal processing on 

FPGA / ARM CPU
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24 GHz Secondary Radar

Operation principle
 Coarse pre-synchronization over IEEE 802.15.4
 Master sends synchronization FMCW ramps
 Slave synchronizes precisely in time and frequency
 Slave sends measurement FMCW ramps
 Master calculates distance from RTOF

Node 2

Node 1

Radar Node 1
(Robot, Master)

Radar Node 2
(Person, Slave)

f

f

t

t

F1 F2

F3 F4

tRTOFMaster   Slave
(synchronisation) Slave   Master

(measurement)
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3D Localization – Operation Principle

3D Spatial Matched Filter Pseudo-Spectrum

 Precise synchronization using FMCW ramps enables accurate 
RTOF measurement (and thus distance measurement)

 Azimuth and elevation measurement using digital beamforming
 Angle estimation accurate and reliable in rooms and foyers
 Disturbance by multipath signals in long narrow corridors

Node 2

Node 1

Operation Principle
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3D Localization

 Signal model for IF signal

– fn: frequency in channel n
– φg,n: Phase due to TOF
– φc,n: Phase mismatch

 3D spatial matched filter Hn

– rRx,n: 3D location of 
antenna n

– rTx,H: Hypothesis in 3D

 3D probability distribution

n n ns t A f t g,n c,n( )= cos(2π +φ +φ )

2= exp j2πnH
 
 
  

Rx,n Tx,Hr r

, n n n n
n

I S H S s t
8

=1

( ) = = ( ( ))Tx,Hr 

Normalized probability density distribution

 3D localization of a person possible

Node 2

Node 1

rTx,H

rRx,1 rRx,2

rRx,3
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2D Array Calibration

 Problem: Side lobes rising due to channel-to-channel 
phase mismatch φc,n

 Calibration approach: Model channel mismatch and 
mutual coupling by 8 × 8 complex matrix C

– Measurements to a target at multiple known positions in 
anechoic chamber

– Formulate and solve least-squares problem to obtain C
– Apply calibration to measurement S

 Unambiguous measurement range extended to >±45°
in both azimuth and elevation
 Mean absolute error <1°
 SLL reduced to close-to-ideal levels

-1=calS C S
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• Planar Antenna Array

− Unambiguous measurement range
>±45° in azimuth and elevation

− Accuracy RMSE≈ 1°
 Stationary reference nodes

• Ring Antenna Array

− Measurement range 360° in 
azimuth

− Accuracy RMSE≈ 2°
 Mobile node

8 × Rx

Tx

Sparse Antenna Arrays



• Signal model for channel n:

• Amplitude monopulse

• φaz,AM is a coarse but stable and 
unambiguous estimate

• Use signal phases and Bartlett 
beamformer for better accuracy
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